Regio- and Stereo-selectivity in the Hydrogenation of Aryl Phosphines by Niobium Aryloxide Compounds

Mark C. Potyen and lan P. Rothwell*

Department of Chemistry, 1393 Brown Building, Purdue University, West Lafayette, IN 47907- 1393, USA

The sequential hydrogenation of the three aryl rings in PPh₃ by the catalyst system [Nb(OC₆HPh₄-2,3,5,6)₃Cl₂]/3BuⁿLi occurs with relative rates of 39:28:1; NMR analysis of the PhPCy₂ obtained from [P(C₆D₅)₃/H₂] and [P(C₆H₅)₃/D₂] shows a predominately all *cis* hydrogenation of both aryl rings has occurred.

The recently demonstrated ability of niobium aryloxide compounds to carry out the hydrogenation of aryl phosphines raises many mechanistic problems.^{1,2} Two key questions concern substrate selectivity and the stereochemistry of the reaction. Aspects of both of these questions are addressed here.

Although originally demonstrated using the catalyst precursor $[Nb(OC_6H_3Ph_2-2,6)_2(CH_2C_6H_4-4Me)_3] (OC_6H_3Ph_2-2,6 =$ $2,6$ -diphenylphenoxide)¹ the hydrogenation of aryl phosphines can also be achieved in the presence of chloroaryloxides $[Nb(OAr)_2Cl_3]$ and $[Nb(OAr)_3Cl_2]$ (OAr = various 2,6-disubstituted phenoxides)³ activated with varying ratios of BuⁿLi.[†] Monitoring $(31P)$ NMR of aliquots \ddagger) the hydrogenation of PPh₃ by the mixture $[Nb(OC_6H_3Pr_2-2, 6)_2Cl_3]/4Bu^nLi(OC_6H_3Pr_2-$ 2,6 = **2,6-diisopropylphenoxide)** over time (Fig. 1) shows that the third phenyl ring is hydrogenated at a much slower rate than the first two. The reaction profile can be fit using a consecutive first order kinetic model which yields the relative rates of hydrogenation of PPh₃, PPh₂Cy and PPhCy₂ (Fig. 1). The reaction profile at 60 "C is insensitive to the ratio of catalyst/ substrate. In contrast, using **bis(dipheny1phosphino)methane** (dppm) as substrate with the catalyst system $[Nb(OC₆H₃Pr₂-1]$

 $2,6$ ₃Cl₂]/3BuⁿLi shows a completely different reaction profile (not yet modelled) in which the final product (dcpm) is generated with only small amounts of intermediates being built up (Fig. 2). This profile is possibly indicative of multiple arene rings being hydrogenated while the substrate is attached to a single catalyst site.

The catalyst mixture [NbOC₆HPh₄-2,3,5,6)₃Cl₂]/3BuⁿLi containing **2,3,5,6-tetraphenylphenoxide** ancillary ligation generates a reaction profile for $PPh₃$ in which the intermediate PPhCy, builds up dramatically (Fig. *3).* This system can be used to synthetically prepare and purify PPhCy₂ whose ¹H NMR spectrum (assigned by a combination of COSY and HETCOR experiments) shows all eleven, non-equivalent cyclohexyl ring protons (Fig. 4). The samples of $PhCy_2$ obtained by reacting $P(C_6H_5)$ ₃ with D_2 and $P(\hat{C}_6D_5)$ ₃ with H_2 give ¹H NMR spectra consistent with a predominantly all *cis* hydrogenation of the two phenyl rings (Fig. 4). Mass spectrometric studies show that these samples are $[2H_{12}]$ and $[2H_{15}]$ respectively, *i.e.* negligible H/D [²H] scrambling occurs during hydrogenation.
The hydrogenation of MePPh₂ by [Nb(OC₆HPh₄-

The hydrogenation of MePPh₂ by 2,3,5,6)3C12]/3BunLi proceeds *via* intermediate MePPhCy with

Fig. 1 Reaction profile (fraction of products *vs.* the fraction hydrogenation) for the hydrogenation of PPh₃ by the mixture [Nb(OC₆H₃Pri₂-2,6)₂Cl₃]/4BuⁿLi (OC6H3Pri2-2,6 = **2,6-diisopropylphenoxide).** The solid black lines represent the reaction profile predicted by the kinetic model shown.

850 **J. CHEM. SOC., CHEM. COMMUN., 1995**

Fig. 2 Reaction profile (fraction of products *vs.* the fraction hydrogenation) for the hydrogenation of dppm by the mixture **[Nb(OC6H3Pri2-2,6)3C12]/3BunLi** (OC6H3Pri2-2,6 = **2,6-diisopropylphenoxide).** The solid coloured lines do not represent a kinetic model but simply show the trends.

Fraction hydrogenation

Fig. 3 Reaction profile (fraction of products *vs.* the fraction hydrogenation) for the hydrogenation of PPh₃ by the mixture [Nb(OC₆HPh₄-2,3,5,6)₃Cl₂]/3BuⁿLi (OC6HPh4-2,3,5,6 = **2,3,5,6-tetraphenylphenoxide).** The solid black lines represent the reaction profile predicted by the kinetic model shown.

Fig. 4 ¹H NMR spectra of the aliphatic region $(500 \text{ MHz}, C_6D_6, 30 \text{ °C})$ for using the mixture $[Nb(OC_6HPh_4-2,3,5,6)_3Cl_2]/3Bu^nLi(OC_6HPh_4-2,3,5,6)$ 2,3,5,6-tetraphenylphenoxide) to carry out the reactions $[P(C_6H_5)_3/H_2]$, $P(C_6H_5)(C_6H_{11})_2$, $P(C_6H_5)(C_6H_5D_6)_2$ and $P(C_6D_5)(C_6D_5H_6)_2$ obtained $[P(C_6H_5)_3/D_2]$ and $[P(C_6D_5)_3/H_2]$

a reaction profile modelled by a 2 : **1** ratio of rate constants, *i.e.* MePPh2 is hydrogenated twice as fast as MePPhCy. The bulkier PrⁱPPh₂, however, generates the chiral (unresolved) intermediate PriPPhCy in > 80% isolable yield (rate constant ratio of *ca.* 28 : 1). ¹H NMR of the Pr^{ipph}($C_6H_5D_6$) obtained by reacting PriPPh2 with D2 again shows a predominantly all *cis* arene hydrogenation has occurred (Fig. 5).

We thank the Department of Energy for support of this research.

Received, 9th December 1994; Com. 4/07536F

Footnotes

t In a typical procedure, a 300 ml stainless steel high pressure reactor fitted with a glass liner was charged in a dry box with $[Nb(OC₆H₃Prⁱ₂-2,6)₂Cl₃]$ $(0.26 \text{ g}, 0.47 \text{ mmol})$ and PPh₃ $(2.5 \text{ g}, 9.5 \text{ mmol})$ in benzene (17 ml) . After the addition of BuⁿLi in hexane (3.0 ml of 0.5 mol 1^{-1} , 1.5 mmol), the reactor was pressurized with H_2 (1200 psi initial pressure) and heated at 60 "C for varying amounts of time.

 $\frac{1}{4}$ *Selected data*: ³¹P NMR (C₆D₆, 30 °C): for P(C₆H₅)₃, δ -4.93; P(C₆D₅)₃, -5.60; P(C₆H₃)₂(C₆H₁), -3.55; P(C₆H₅)₂(C₆H₅D₆), -3.85; $-3.55;$ $P(C_6H_5)_2(C_6H_5D_6),$

Fig. 5 ¹H NMR spectra of the aliphatic region (500 MHz, C_6D_6 , 30 °C) for $P(\Pr^i)(C_6H_5)(C_6H_{11})$ and $P(\Pr^i)(C_6H_5)(C_6H_5)$ obtained using the mixture $[Nb(OC_6HPh_4-2,3,5,6)_3Cl_2]/3Bu^nLi$ $(OC_6HPh_4-2,3,5,6 = 2,3,5,6-tetra$ phenylphenoxide) to carry out the reactions $[P(Pr)(C_6H_5)_2/H_2]$ and $[P(\Pr^i)(C_6H_5)_2/D_2]$

 $P(C_6D_5)_2(C_6D_5H_6)$, -4.00; $P(C_6H_5)(C_6H_{11})_2$, 2.45; $P(C_6H_5)(C_6H_5D_6)_2$, 1.83; $P(C_6D_5)(C_6D_5H_6)_2$, 2.02; $P(C_6H_{11})_3$, 10.27; $P(C_6H_5D_6)_3$, 9.15;
 $P(C_6D_5H_6)_3$, 10.00; $P(Pr^i)(C_6H_5)_2$, 1.09; $P(Pr^i)(C_6H_5)(C_6H_{11})$, 6.65; $P(Pr^i)(C_6H_5)(C_6H_5D_6)$, 6.31; $P(Pr^i)(C_6H_{11})_2$, 13.71; $P(Pr^i)(C_6H_5D_6)_2$, 12.97.

References

- 1 J. **S.** Yu and I. P. Rothwell, *J. Chem. Soc., Chenz. Commun.,* 1992, 632.
- *2* **V.** M. Visciglio, P. E. Fanwick and I. P. Rothwell, *J. Chem. Soc., Chem. Commun.,* 1992,1505; **B.** C. Ankianiec, P. E. Fanwick and I. P. Rothwell, *J. Am. Chem. Soc.,* 1991, **113,** 4710. J. **S.** Yu, B. C. Ankianiec, M. T. Nguyen and I. P. Rothwell, *J. Am. Chem. Soc.,* 1992, **114,** 1927.
- 3 L. R. Chamberlain, J. Keddington and I. P. Rothwell, *Organometallics*, 1982, **1,** 1098; L. R. Chamberlain, I. P. Rothwell and J. C. Huffman, *Inorg. Chem.,* 1984, **23,** 2575; R. W. Chesnut, L. D. Durfee, P. E. Fanwick and I. P. Rothwell, *Polyhedron,* 1987,6, 2019; B. D. Steffey, L. R. Chamberlain, R. W. Chesnut, D. E. Chebi, P. **E.** Fanwick and I. P. Rothwell, *Organometullics,* 1989,8, 1419; R. W. Chesnut, J. **S.** Yu, P. E. Fanwick and I. P. Rothwell, *Polyhedron,* 1990, **9,** 1051; M. **A.** Lockwood, M. C. Potyen, B. D. Steffey, P. E. Fanwick and I. P. Rothwell, *Polyhedron,* submitted for publication.